Unit 3: Exponents Practice Test

Math 9 Principles

Name: \qquad Block: \qquad

Abstract

Please initial this box to indicate you carefully read over your test and checked your work for simple mistakes.

	What I can do in this unit	Level
$3-1$	I can convert powers between exponential form, expanded form, and standard form and evaluate using integer, fractions, and decimal bases.	
$3-2$	I can use the exponent laws for products and quotients. (add exponents for products of same bases, subtract for quotients).	
$3-3$	I can use the power of a power exponent law and apply it to coefficients and variables. (multiply exponents when taking the power of a power)	
$3-4$	I can convert a negative power to a positive power and evaluate a zero power with integer and fraction bases.	

Code	Value	Description
N	Not Yet Meeting Expectations	I just don't get it.
MM	Minimally Meeting Expectations	Barely got it, I need some prompting to help solve the question.
M	Meeting Expectations	Got it, I understand the concept without help or prompting.
E	Exceeding Expectations	Wow, nailed it! I can use this concept to solve problems I may have not seen in practice. I also get little details that may not be directly related to this target correct.

3-1: I can convert powers between exponential form, expanded form, and standard form and evaluate using integer, fractions, and decimal bases.

Complete the table:

\#	Exponential Form	Expanded Form	Standard Form
${ }^{1)}$	4^{2}	$4 \cdot 4$	16
${ }^{2)}$	${ }^{-3^{4}}$	$-3 \cdot 3 \cdot 3 \cdot 3$	-81
${ }^{3)}$	$(-2)^{5}$	$(-2)(-2)(-2)(-2)(-2)$	-32
4$)$	x^{6}	$x \cdot x \cdot x \cdot x \cdot x \cdot x$	Cannot

Write each of the following in exponential form in as many ways as indicated. Do not use a power of 1.

$\#$	Standard Form	Exponential Form
5$)$	81 (2 ways)	$3^{4}, 9^{2}$
6$)$	125	5^{3}
7$)$	$1000000(3$ ways	$10^{6}, 100^{3}, 1000^{2}$
8$)$	$x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x$	x^{7}

Evaluate each expression

Rewrite in standard form as a fraction or integer (no decimals)

3-2: I can use the exponent laws for products and quotients.

25) Rewrite each number with a base 2 , then simplify. $\frac{256 \cdot 1024}{16 \cdot 64}$

$$
=\frac{2^{8} \cdot 2^{10}}{2^{4} \cdot 2^{6}}=\frac{2^{18}}{2^{10}}=2^{8} \quad(256)
$$

26) If a spaceship can travel at a rate of about $10^{5} \mathrm{~km}$ per second, how long, in seconds, would it take to reach a star that is $10^{12} \mathrm{~km}$ away?

$$
t=\frac{d}{r}=\frac{10^{2}}{10^{5}}=10^{2} \mathrm{~s}
$$

27) There are approximately 10^{8} grains of sand in one cubic meter of sand. If a beach contains 10^{6} cubic meters of sand, how many grains of sand are on the beach?

$$
\begin{aligned}
& =10^{8}-10^{6} \\
& =10^{14} \text { grains }
\end{aligned}
$$

28) A space probe can travel at $10^{14} \mathrm{~km}$ in 10^{6} hours. How far can it travel (in km) in 10^{22} hours? (Hint: First convert its speed to km / h.)

$$
\begin{aligned}
& r=\frac{10}{104} \mathrm{hm} \\
& d=r t=\left(10^{8} / \mathrm{mm} / \mathrm{h}\right) 10^{22} \mathrm{~h}=40^{30} \mathrm{~km}
\end{aligned}
$$

3-3: I can use the power of a power exponent law and apply it to coefficients and variables.

3-4: I can convert a negative power to a positive power and evaluate a zero power with integer and fraction bases.

