Unit 3: Exponents Practice Test

Math 9 Principles

Name:	Block:
	Please initial this box to indicate you carefully read over your test and checked your work for simple
	mistakes.

	What I can do in this unit	Level
3-1	I can convert powers between exponential form, expanded form, and standard form and evaluate using integer, fractions, and decimal bases.	
3-2	I can use the exponent laws for products and quotients. (add exponents for products of same bases, subtract for quotients).	
3-3	I can use the power of a power exponent law and apply it to coefficients and variables. (multiply exponents when taking the power of a power)	
3-4	I can convert a negative power to a positive power and evaluate a zero power with integer and fraction bases.	

Code	Value	Description
N	Not Yet Meeting Expectations	I just don't get it.
MM	Minimally Meeting Expectations	Barely got it, I need some prompting to help solve the question.
М	Meeting Expectations	Got it, I understand the concept without help or prompting.
E	Exceeding Expectations	Wow, nailed it! I can use this concept to solve problems I may have not seen in practice. I also get little details that may not be directly related to this target correct.

3-1: I can convert powers between exponential form, expanded form, and standard form and evaluate using integer, fractions, and decimal bases.

Complete the table:

#	Exponential Form	Expanded Form	Standard Form
1)	42	4.4	16
2)	-3 ⁴	-3.3.3.3	-81
3)	$(-2)^5$	(-2)(-2)(-2)(-2)(-2)	-32
4)	x ⁶	XXXXXX	Cannot

Write each of the following in exponential form in as many ways as indicated. Do not use a power of 1.

#	Standard Form	Exponential Form
5)	81 (2 ways)	3 ⁴ , 9 ²
6)	125	53
7)	1 000 000 (3 ways)	106, 1003, 10002
8)	$x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x$	χ^{\prime}

Evaluate each expression

9)
$$3^{3}-2^{4}+1^{19}$$

$$= 27-16+1$$

$$= (2)$$

$$= (10) -5^{2}+(-2)^{3}$$

$$= -25-8$$

$$= -33$$

$$= (1-25)$$

$$= (1-25)$$

$$= (-24)$$

$$= (-25)$$

$$= (-24)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-25)$$

$$= (-2$$

Rewrite in standard form as a fraction or integer (no decimals)

$-(-2)^4$	$ \begin{array}{c} 14) \left(\frac{3}{5}\right)^4 \\ = \frac{3}{5} \cdot 1 = \left(\frac{81}{625}\right) \end{array} $	$15) \left(-\frac{1}{4}\right)^{3}$ $= -\frac{1}{64}$	
16) $\left(-1\frac{1}{3}\right)^{2}$ $= \left(-\frac{4}{3}\right)^{2} = \boxed{\frac{16}{9}}$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$)

3-2: I can use the exponent laws for products and quotients.

19) $5^2 \cdot 5^8$ $= 5^{10}$	$20) \frac{x^{10}}{x} = \chi^{9}$	$ 21) (-2)^5 \cdot (-2)^6 $ $ = $
$22) \frac{3^{6} \cdot 3^{2} \cdot 3}{3^{5} \cdot 3^{4}}$ $= \frac{3^{6}}{3^{6}} = (1)$	23) $\frac{(-4)^{3}(-4)^{4}}{(-4)^{2}(-4)^{2}}$ $= \frac{(-4)^{7}}{(-4)^{4}} = (-4)^{3}$ $= -6$	$24) \frac{x^{6} \cdot x \cdot x^{3}}{x^{2} \cdot x^{7}}$ $= \underbrace{\chi}_{0}$

25) Rewrite each number with a base 2, then simplify. $\frac{256 \cdot 1024}{16 \cdot 64}$

$$=\frac{2^{8} \cdot 2^{0}}{2^{4} \cdot 2^{6}}=\frac{2^{18}}{2^{0}}=2^{18}$$
 (256)

26) If a spaceship can travel at a rate of about 10^5 km per second, how long, in seconds, would it take to reach a star that is 10^{12} km away?

$$t = \frac{d}{r} = \frac{10^{12}}{10^{5}} \neq 10^{7}$$

There are approximately 10^8 grains of sand in one cubic meter of sand. If a beach contains 10^6 cubic meters of sand, how many grains of sand are on the beach?

$$= 10^{8} \cdot 10^{6}$$

= (10^{14} grains)

 $= 10^{8} - 10^{6}$ $= 10^{10} \text{ grains}$ 28) A space probe can travel at 10^{14} km in 10^{6} hours. How far can it travel (in km) in 10^{22} hours? (Hint: First convert its speed to km/h.)

$$C = \frac{10^{14} \text{ hm}}{10^{6} \text{ h}} = 10^{8} \text{ hm /h}$$

$$C = rt = (10^{8} \text{ hm /h}) 10^{22} \text{ h} = (0^{30} \text{ hm})$$

3-3: I can use the power of a power exponent law and apply it to coefficients and variables.

$$= \underbrace{3^{15}}_{}$$

30)
$$(2^3)^6$$

31)
$$(a^{6})^{3}(a^{2})^{3}$$

$$= a^{18} a^{6}$$

$$= a^{24}$$

$$32) \frac{(3^{2})^{3}(3^{7})^{2}}{(3^{5})^{2}}$$

$$= 3^{6} \cdot 3^{14}$$

$$= 3^{20}$$

$$= 3^{20}$$

33)
$$(5x^3)^5$$

34)
$$\frac{(5x^{3})^{2}(5x^{3})^{7}}{(5x^{3})^{5}}$$

$$= \underbrace{5^{3}\chi^{6} \cdot 5^{7}\chi^{7}}_{5^{7}\chi^{7}}$$

$$= \underbrace{5^{9}\chi^{27}}_{5^{7}\chi^{7}}$$

$$= \underbrace{5^{4}\chi^{12}}_{5^{7}\chi^{12}}$$

35)
$$\frac{(6x^{12})^3}{(6x^7)^2}$$

$$= 6^{3}\chi^{36}$$

$$= 6^{1}\chi^{14}$$

36)
$$\frac{(256x^{5})^{4}(128x^{2})^{5}}{(1024x^{6})^{3}}$$

$$= \underbrace{(2^{7}\chi^{5})^{4}(2^{7}\chi^{2})^{5}}_{(2^{7}\chi^{2})^{5}}$$

$$= \underbrace{(2^{7}\chi^{5})^{4}(2^{7}\chi^{2})^{5}}_{(2^{7}\chi^{2})^{5}}_{(2^{7}\chi^{2})^{5}}_{(2^{7}\chi^{2})^{5}}_{(2^{7}\chi^{2})^{5}}_{(2^{7}\chi^{2})^{5}}_{(2^{7}\chi^{2})^{5}}_{(2^{7}\chi^{2})^{5}}_{(2^{7}\chi^{2})^{5}}_{(2^{7}\chi^{2})^{5}}_{(2^{7}\chi^{2})^{5}}_{(2^{7}\chi^{2})^{5}}_{(2^{7}\chi^{2})^{5}}_{(2^{7}\chi^{2})^{5}}_{(2^{7}\chi^{2})^{5}}_{(2^{7}\chi^{2})^{5}}_{(2^{7}\chi^{2})^$$

$$37) \frac{(243x^{4})^{3}(81x^{2})^{5}}{(2187x^{8})^{2}}$$

$$= \frac{(3^{5}\chi^{4})^{3}(3^{3}\chi^{2})^{5}}{(3^{7}\chi^{8})^{2}}$$

$$= \frac{3^{15}\chi^{12}3^{23}\chi^{16}}{3^{14}\chi^{16}}$$

$$= \frac{3^{35}\chi^{12}}{3^{14}\chi^{16}}$$

$$= 3^{21}\chi^{6}$$

3-4: I can convert a negative power to a positive power and evaluate a zero power with integer and fraction bases.

38) 5^{-3}

39) $(-x)^{-24}$

$$=\frac{1}{(-\chi)^{i}}$$

$$=\frac{1}{(-\chi)^{i}}$$

 $40) -3^{-5}$

$$-\frac{1}{3^{5}}$$

41) $(2x^6)^0$

 $42) 29x^0$

43) $-(-4)^{-2}$

$$= -\frac{1}{(-4)^2}$$

$$= -\frac{1}{(-4)^2}$$

44) $(2^{-3})^3 \cdot (2^4)^{-2}$

$$= 2^{-9} \cdot 2^{-8}$$
$$= 2^{-17}$$

$$=\frac{3^{-7}}{3^{-4}}$$

$$= \underbrace{\frac{1}{3^5}}$$

$$=\frac{2^{-8}\chi^{15}}{2^{-9}}$$

$$=\frac{2}{2^{19}}$$