Unit 3: Exponents Practice Test

Math 9 Principles

Name: \qquad Block: \qquad

Abstract

Please initial this box to indicate you carefully read over your test and checked your work for simple mistakes.

	What I can do in this unit	Level
$3-1$	I can convert powers between exponential form, expanded form, and standard form and evaluate using integer, fractions, and decimal bases.	
$3-2$	I can use the exponent laws for products and quotients. (add exponents for products of same bases, subtract for quotients).	
$3-3$	I can use the power of a power exponent law and apply it to coefficients and variables. (multiply exponents when taking the power of a power)	
$3-4$	I can convert a negative power to a positive power and evaluate a zero power with integer and fraction bases.	

Code	Value	Description
N	Not Yet Meeting Expectations	I just don't get it.
MM	Minimally Meeting Expectations	Barely got it, I need some prompting to help solve the question.
M	Meeting Expectations	Got it, I understand the concept without help or prompting.
E	Exceeding Expectations	Wow, nailed it! I can use this concept to solve problems I may have not seen in practice. I also get little details that may not be directly related to this target correct.

3-1: I can convert powers between exponential form, expanded form, and standard form and evaluate using integer, fractions, and decimal bases.

Complete the table:

$\#$	Exponential Form	Expanded Form	Standard Form
1$)$	2^{3}		
2$)$	-3^{4}		
3$)$	$(-2)^{5}$		Cannot
4$)$	x^{5}		

Write each of the following in exponential form in as many ways as indicated. Do not use a power of 1.

$\#$	Standard Form	Exponential Form
5$)$	125	
6$)$	64	
7$)$	1000000	
8$)$	$x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x$	

Evaluate each expression

9) $3^{4}-2^{3}+1^{20}$	10) $-5^{2}+(-2)^{3}$
11$)(5-20)^{0}-(-5)^{2}$	12) $\left(\frac{1}{2}\right)^{3} \div\left(\frac{3}{4}\right)^{3}$

Rewrite in standard form as a fraction or integer (no decimals)

13$)-(-3)^{4}$	$14)\left(\frac{5}{3}\right)^{4}$	15) $\left(-\frac{3}{4}\right)^{3}$
16$)\left(-1 \frac{1}{3}\right)^{2}$	$17)(0.4)^{3}$	$18)(1.5)^{4}$

3-2: I can use the exponent laws for products and quotients.

19) $5^{2} \cdot 5^{7}$	20) $\frac{x^{9}}{x}$	21) $(-2)^{4} \cdot(-2)^{3}$
22) $\frac{3^{6 \cdot 3} \cdot 3^{2} \cdot 3}{3^{3} \cdot 3^{4}}$	23) $\frac{(-4)^{5}(-4)^{4}}{(-4)^{6}(-4)^{3}}$	24) $\frac{x^{5} \cdot x \cdot x^{2}}{x^{4} \cdot x^{7}}$

25) Rewrite each number with a base 2 , then simplify. $\frac{256 \cdot 1024}{64 \cdot 16}$
26) If a spaceship can travel at a rate of about $10^{6} \mathrm{~km}$ per second, how long, in seconds, would it take to reach a star that is $10^{15} \mathrm{~km}$ away?
27) There are approximately 10^{9} grains of sand in one cubic meter of sand. If a beach contains 10^{5} cubic meters of sand, how many grains of sand are on the beach?
28) A space probe can travel at $10^{16} \mathrm{~km}$ in 10^{7} hours. How far can it travel (in km) in 10^{21} hours? (Hint: First convert its speed to km / h.)

3-3: I can use the power of a power exponent law and apply it to coefficients and variables.

29) $\left(3^{5}\right)^{2}$	30) $\left(2^{4}\right)^{5}$	31) $\left(a^{7}\right)^{3}\left(a^{2}\right)^{4}$

3-4: I can convert a negative power to a positive power and evaluate a zero power with integer and fraction bases.

38) 5^{-2}	39) $(-x)^{-17}$	$40)-3^{-4}$
41$)\left(2 x^{3}\right)^{0}$	$42) \quad 27 x^{0}$	$43)-(-4)^{-3}$
44$)\left(2^{-3}\right)^{2} \cdot\left(2^{2}\right)^{-4}$	$45) \frac{1}{3^{-5} \cdot 3^{-8}}$	

