Unit 3: Exponents Practice Test

Math 9 Principles

Name: ______ Block: _____

Please initial this box to indicate you carefully read over your test and checked your work for simple mistakes.

	What I can do in this unit	Level
3-1	I can convert powers between exponential form, expanded form, and standard form and evaluate using integer, fractions, and decimal bases.	
3-2	I can use the exponent laws for products and quotients. (add exponents for products of same bases, subtract for quotients).	
3-3	I can use the power of a power exponent law and apply it to coefficients and variables. (multiply exponents when taking the power of a power)	
3-4	I can convert a negative power to a positive power and evaluate a zero power with integer and fraction bases.	

Code	Value	Description
Ν	Not Yet Meeting Expectations	I just don't get it.
MM	Minimally Meeting Expectations	Barely got it, I need some prompting to help solve the question.
М	Meeting Expectations	Got it, I understand the concept without help or prompting.
E	Exceeding Expectations	Wow, nailed it! I can use this concept to solve problems I may have not seen in practice. I also get little details that may not be directly related to this target correct.

3-1: I can convert powers between exponential form, expanded form, and standard form and evaluate using integer, fractions, and decimal bases.

#	Exponential Form	Expanded Form	Standard Form
1)	2 ³	2.2.2	8
2)	-34	-3.3.3.3	-8 (
3)	(-2) ⁵	(-2)(-2)(-2)(-2)(-2)	-32
4)	x ⁵	2.2.2.22	Cannot

Complete the table:

Write each of the following in exponential form in as many ways as indicated. Do not use a power of 1.

#	Standard Form	Exponential Form
5)	125	53
6)	64	$2^{\circ}, 4^{3}, 8^{2}$
7)	1 000 000	$10^{6}, 100^{3}, 1000^{2}$
8)	$x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x$	χ^{2}

Evaluate each expression

Rewrite in standard form as a fraction or integer (no decimals)

3-2: I can use the exponent laws for products and quotients.

25) Rewrite each number with a base 2, then simplify. $\frac{2^{8} \cdot 2^{6}}{2^{6} \cdot 7^{4}} = \frac{2^{18}}{2^{10}} = \frac{2^{8}}{2^{10}} = \frac{2^{8}}{2^{10}}$

26) If a spaceship can travel at a rate of about 10⁶ km per second, how long, in seconds, would it take to reach a star that is 10¹⁵ km away?

$$t = \frac{d}{r} = \frac{10^{15}}{10^{\circ}} = 10^{9} \text{ s}$$

27) There are approximately 10⁹ grains of sand in one cubic meter of sand. If a beach contains 10⁵ cubic meters of sand, how many grains of sand are on the beach?

$$(10^{6})(10^{5}) = 10^{10} grains$$

A space probe can travel at 10¹⁶ km in 10⁷ hours. How far can it travel (in km) in 10²¹ hours? (Hint: First convert its speed to km/h.)

 $r = \frac{d}{t} = \frac{10'}{10'}$ r = 10' hm/h

3-4: I can convert a negative power to a positive power and evaluate a zero power with integer and fraction bases.

38) 5 ⁻²	39) $(-x)^{-17}$	40) -3 ⁻⁴
$=\frac{l}{25}$	$=\frac{1}{(-\chi)^{n}}=-\frac{1}{\chi^{n}}$	$=-\frac{1}{3^4}$
41) (2x ³) ⁰	42) $27x^{0}$ = 27. (- 27)	$\begin{array}{c} 43) -(-4)^{-3} \\ = & - & 1 \\ (-4)^{-3} \\ = & (-4)^{-3$
$ \begin{array}{r} 44) (2^{-3})^2 \cdot (2^2)^{-4} \\ = 2^{-6} 2^{-8} \\ = 2^{-1/4} \\ 1 \\ 2^{-1/4} \\ \end{array} $	$45) \frac{1}{3^{-5}} \cdot 3^{-8} \\ = \frac{3^{-3}}{3^{-5}} \\ = 3^{-3} \\ = \frac{1}{3^{-3}} = \frac{1}{2^{-7}} \\ = \frac{1}{2^{-$	46) $\frac{(2^{3})^{-4} \cdot (2^{-5})^{-2}}{(2^{-3})^{3}}$ $= 2^{-12} \cdot 2^{10}$ $= 2^{-2}$ $= 2^{-2}$ $= 2^{-2}$