1-1: I can identify numbers on a number line, compare positive and negative numbers, and evaluate absolute values.

1. Evaluate: $|5-23|$

2. Place $a<,>$, or $a=$ sign between the following to make it true:

$$
\begin{aligned}
\mid 12-8 & =15-19 \mid \\
4 & =4
\end{aligned}
$$

3. Evaluate: $|12|-|-3|$

$$
12-3=9
$$

4. $|5+-8|+|-6|$

$$
|-3|+|-6|=9
$$

5. Graph the following numbers on a number line $-2,-3,0,1$.

6. Evaluate the expression $|a|-|c-b|$ when $a=-8, b=-7$, and $c=6$.

$$
\begin{aligned}
& 1-81-16--71 \\
= & 8-13=-5
\end{aligned}
$$

7. Evaluate: $6+(-3)=$

$$
=6-3=3
$$

8. Evaluate: $-7-(3--12)=$

$$
=-7-(15)=-22
$$

9. Evaluate: $(8-4)-(-2+6)=$

$$
=4-4=0
$$

10. Find the value that should go in the blank in order for the statement to be true.

11. Find the value that should go in the blank in order for the statement to be true.
$-3-(-4)=1$
$+4$

1-3: I can evaluate expressions with integers using correct order of operations.
12. Evaluate: $15-2(6)=$

$$
15-12=3
$$

13. Evaluate: $4-6(3+-9)=$

$$
4-6(-6)=4+36=40
$$

14. Evaluate: $3(18-15)-2(6-+4)=$

$$
\begin{aligned}
& =3(3)-2(2) \\
& =9-4=5
\end{aligned}
$$

15. Evaluate: $\frac{15--1}{-5+-3}=\frac{15+1}{-5-3}=\frac{16}{-8}=-2$
16. Evaluate: $\frac{-2(-3)-5(10+8)}{(8-12)(-5--3)}=\frac{6-5(10-8)}{-4(-5+3)}=\frac{6-5(2)}{-4(-2)}$

$$
=\frac{-4}{8}=-\frac{1}{2}
$$

1-4: I can add or subtract two or more fractions (in mixed number form or improper).
17. Reduce to lowest terms: $\frac{24}{18}=$

$$
\frac{4}{3}
$$

Rewrite each question with common denominators then add or subtract as required.
18. $\frac{5}{6}+\frac{1}{4}$

$$
\frac{5 \cdot 2}{6 \cdot 2}+\frac{1 \cdot 3}{4 \cdot 3}=\frac{10}{12}+\frac{3}{12}=\frac{13}{12} \quad\left(1 \frac{1}{12}\right)
$$

19. $\frac{5}{8}-\frac{1}{4}$

$$
=\frac{5}{8}-\frac{1}{4} \cdot 2=\frac{5}{8}-\frac{2}{8}=\frac{3}{8}
$$

$$
\begin{aligned}
& \text { 20. } 3 \frac{1}{3}-2 \frac{1}{4} \\
& \left.=\frac{10}{3}-\frac{9}{4}=\frac{40}{12}-\frac{27}{12}=\frac{13}{12}\right)
\end{aligned}
$$

21. $\frac{2}{3}-1 \frac{1}{5}$

$$
\frac{2}{3}-\frac{6}{5}=\frac{10}{15}-\frac{18}{15}=-\frac{8}{15}
$$

1-5: I can multiply or divide two or more fractions, remembering to simplify before evaluating. I always reduce!
22. Evaluate: $\frac{10}{9} \cdot \frac{6}{5}$
$2 \frac{10}{93} \cdot \frac{6^{2}}{51}$

23. Evaluate: $\frac{25}{12} \div 8 \frac{3}{4}$

$$
\frac{25}{12} \div \frac{35}{4}=\frac{25^{5}}{123} \cdot \frac{41}{357}=\frac{5}{21}
$$

24. Evaluate: $-\frac{6}{25} \div \frac{12}{5} \div \frac{5}{6}$

$$
=-\frac{6^{3}}{25} \cdot \frac{5^{\prime} 1}{122} \cdot \frac{61}{5}=-\frac{3}{25}
$$

25. Evaluate: $\left(\frac{5}{6}-\frac{2}{3}\right) \cdot\left(\frac{3}{4} \div \frac{9}{2}\right)$

$$
\begin{aligned}
& =\left(\frac{5}{6}-\frac{2}{3}\right) \cdot\left(\frac{6}{4} \cdot \frac{21}{73}\right) \\
& =\left(\frac{5}{6}-\frac{4}{6}\right)\left(\frac{1}{6}\right)=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36}
\end{aligned}
$$

26. How many people can you serve with fifteen pizzas if each person gets exactly three-fifths of a pizza?

$$
15 \div \frac{3}{5}=15 \cdot \frac{5}{3}=25
$$

