Unit 5: Polynomials Practice Test

Math 9 Principles

Name: \qquad Block: \qquad

	Please initial this box to indicate you carefully read over your test and checked your work for simple mistakes.	
	What I can do in this unit	Level
$5-1$	I can identify, add, and subtract like terms.	
$5-2$	I can identify, add, and subtract monomials, binomials, trinomials, and quadrinomials and determine their degree.	
$5-3$	I can simplify products and quotients of monomials and use the Distributive Property when multiplying a monomial and a polynomial.	
$5-4$	I can use the Distributive Property to evaluate the product of two binomials (FOIL) or a binomial and a trinomial.	
$5-5$	I can write and simplify the quotient of a polynomial and a monomial as separate terms.	
$5-6$	I can factor polynomials using the Greatest Common Factor (GCF) method.	
$5-7$	I can factor factorials with a leading coefficient of one using the Product Sum technique and trinomials with a leading coefficient that is other than one using a combination of GCF and Product Sum technique.	
$5-8$	I can evaluate surface areas of composite shapes.	

Code	Value	Description
N	Not Yet Meeting Expectations	I just don't get it.
MM	Minimally Meeting Expectations	Barely got it, I need some prompting to help solve the question.
M	Meeting Expectations	Got it, I understand the concept without help or prompting.
E	Exceeding Expectations	Wow, nailed it! I can use this concept to solve problems I may have not seen in practice. I also get little details that may not be directly related to this target correct.

5-1 I can identify, add, and subtract like terms.
Simplify each expression:

1) $18 c--12 c$

$$
=30 c
$$

$$
\text { 2) } \begin{aligned}
& 15 x^{2}-8 x+3 x^{2} \\
= & 18 x^{2}-8 x
\end{aligned}
$$

4) $5 x-4 y+y-5 x$
$=-3 y$
5) $2 x+(-3 x)+2-x--5 x-1$
$=2 x-3 x+2-x+5 x-1$
$=3 x+1$
6)

$$
\begin{aligned}
& (5-r)+(12 r--8) \\
& =5-r+12 r+8 \\
& =11 r+13
\end{aligned}
$$

7) $(-5 y+2 x-5)+(2 x-1)$
$=-5 y+2 x-5+2 x-1$
$=4 x-5 y-6$
8)

$$
\text { 8) } \begin{aligned}
& (2 z-3 y)+(z-y) \\
= & 2 z-3 y+z-y \\
= & -4 y+3 z
\end{aligned}
$$

5-2 I can identify, add, and subtract monomials, binomials, trinomials, and quadrinomials and determine their degree.

Simplify each expression:

17) How many terms does the expression $19 x^{4}-5 x^{3}-15 x^{2}+6 x-7$ have?
18) Give the degree of the polynomial $5 a^{6} b-20 a^{2} b^{3}+12 a$.

$$
(7) \quad(6+1)
$$

19) Give the degree of the constant 15.

5-3 I can simplify products and quotients of monomials and use the Distributive Property when multiplying a monomial and a polynomial.

Simplify each expression:

5-4 I can use the Distributive Property to evaluate the product of two binomials (FOIL) or a binomial and a trinomial.

Simplify each expression:

5-5 I can write and simplify the quotient of a polynomial and a monomial as separate terms.
Divide. Write as separate quotients first, then reduce:

5-6 I can factor polynomials using the Greatest Common Factor (GCF) method.

5-7 I can factor factorials with a leading coefficient of one using the Product Sum technique and trinomial with a leading coefficient that is other than one using a combination of GCF and Product Sum technique.

5-8 I can evaluate surface areas of composite shapes.
Find the surface area of each shape.

62)

7 shared sides

$$
\begin{gathered}
7 \cdot 2=14 \\
36-14=22 \text { units }^{2}
\end{gathered}
$$

64)

$5 A_{1}: \frac{1}{2}(3)(4)(2)=12 F+B$

$$
\begin{aligned}
& 3 \cdot 2=6 \quad L \\
& 5 \cdot 2=\frac{10}{28}
\end{aligned}
$$

$S A_{2}: 4.4 .2=32 \mathrm{~F}+$ Bach
$4 \cdot 2 \cdot 2=16 \quad L+R$
$4.2=8 \quad B$ (Not Ip)
Net $S A=56+28=84$

Shared: $3 \cdot 2 \cdot 2=12$
Net $5 A=22+248-12$

$$
=258
$$

$$
\begin{aligned}
S A_{2}: S A & =2 \pi r^{2}+2 \pi r h \\
& =2 \pi 5^{2}+2 \pi 5.4 \\
& =50 \pi+40 \pi \\
& =90 \pi
\end{aligned}
$$

$$
\mathrm{Net}=102 \pi
$$

