5-6 Unit 5 Day 8
5-6 GC F Factoring
CF $=$ Greatest Common Factor
Expand $2 x(3 x-4)$

$$
=6 x^{2}-8 x
$$

$$
\begin{aligned}
& 6 x^{2}-8 x \\
= & 2 x(3 x-4)
\end{aligned}
$$

Factoring Polynomials means to rewrite as a Factoring Polynomials means to rewrite as a
product of factors. It is the "opposite" of
distribution.

Find the GCF of each:

$$
\begin{aligned}
& 2 x=2 \cdot x \\
& \left.6 x^{2}=(2) \cdot 3 \cdot x\right) \cdot x \\
& \therefore G C F=2 x
\end{aligned}
$$

2)

$$
\begin{aligned}
& 9 x^{2} y^{2}=3 \cdot 3 \cdot x \cdot y \\
& 6 x y^{3}=2 \cdot 3 \cdot y \cdot y \cdot y \\
& \therefore G C F=3 x y^{2}
\end{aligned}
$$

3)

$$
\begin{aligned}
& -8 x^{3} y=-2 \cdot 2 \cdot 2 \cdot x x x \cdot y \\
& \begin{aligned}
24 x^{5} y^{3} & =(2(2 \cdot(\cdot 3 \cdot x) \cdot x) x \cdot x \cdot x \cdot y \cdot y \cdot y \\
-16 x^{2} & =-(2) 2 \cdot 2 \cdot 2(x) \cdot x)
\end{aligned} \\
& \therefore G\left(F=2^{3} x^{2}=8 x^{2} \quad G\left(F=-8 x^{2}\right)\right. \text { (-kike the } \\
& \text { sign of dst tern) } \\
& \begin{array}{l}
\text { 4) } \\
-28 x^{2} y^{5} \quad G\left(F=-4 x^{2} y^{2}\right. \\
-8 x^{3} y^{2} \\
12 x^{5} y^{3}
\end{array}
\end{aligned}
$$

Factor using GCF.
Factor $6 x^{2}-15 x$

1) Find the GCF

$$
\begin{aligned}
& =3 x(2 x)-3 x(5) \\
& =3 x(2 x-5)
\end{aligned}
$$

Factor:
5)

$$
\begin{aligned}
& =-12 x^{3}-15 x^{2} \\
& =-3 x^{2}(4 x+5) \\
& \text { (heck! }-3 x^{2}(4 x+5) \\
& =-12 x^{3}-15 x^{2}
\end{aligned}
$$

2) Optional - rewrite as produds al GCF
3) Factor out GCF + rewrite
4)

$$
\begin{aligned}
& 8 x^{2} y^{2}-4 x^{2} y-6 x y \\
& =2 x y(4 x y-2 x-3)
\end{aligned}
$$

Practice 5-8

